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urement of the flow conditions at the exit section. The
determination of the effects of shock/boundary-layer inter-
action in the nozzle on the shock shape and flow conditions
at the exit section are also needed.

Extension of the present approach to the case of reacting
fluids would again lead to a method of analyzing thrust
vector control without seeking many of the details of a much
more complicated flow field. (This extension is now under
study.) The authors expect that, in the case of the reacting
fluids, just as in the present case of nonreacting fluids, the
problem would reduce to the determination of a few vari-
ables instead of that of all the variables. The solution for
these may then be attempted on the basis of some over-all
considerations or by suitably combining theoretical and
experimental results.

By analyzing thrust vector control on the basis of the pres-
ent approach, one may be able to pick out the important
nondimensional parameters in the problem and know, to a
satisfactory extent, the functional dependence of the side
force on those parameters. For the case of inert gases, it
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can be shown, on the basis of Eqs. (14, 18, and 19), that the

nondimensional side force is given by a relation of the form
Vi i peA.

Fe (e e v ke e 1)
1o U mg Ue? U2 T 5y e’ Uy ¢ d

where v denotes specific heat ratio, and u denotes molecular
weight.
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Optimal Programming Problems with Inequality Constraints

I: Necessary Conditions for Extremal Solutions
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The necessary conditions are presented for an extremal solution to a programming problem

with an inequality constraint on a function of the control and/or the state variables.

Itis

shown that, in general, certain terms must be added to the Euler-Lagrange equations during
intervals in which the solution curve lies on the boundary. Furthermore, for an inequality
constraint function not explicitly involving the control variable(s), one or more functions of
the state and time must satisfy equality constraints at the beginning (the entry corner) of an
inequality constraint boundary interval. These constraints cause discontinuities in the in-
fluence functions (Lagrange multiplier functions) at the entry corner. The derivation of
the necessary conditions which is given may also be used to allow the equations of metion to
be discontinuous or even integrably infinite functions of the state as well as the time at a finite

number of points.
straints are presented.

1. Introduction

N the calculus of variations, the problem of Bolza (the

Mayer formulation is used) has been and continues to
be of major significance. A dynamical system is considered
which is represented at any time by the values of its state
variables and whose development in time is determined by
choices of control variable program(s). The Bolza problem
asks for that control variable program(s) which will maximize
(minimize) a given function of the state, while constraining
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Two analytic example problems with state variable inequality con-

other functions to specified values, at the terminal point.
In this.paper, the primary concerns are the modifications and
additions to the necessary conditions for an extremal solution
of the Bolza problem when there is an inequality constraint
imposed, along the entire path, upon some function of the
control and/or state variables.

Problems involving inequality constraint(s) on the con-
trol variable(s) were treated as early as 1937 by Valentine.!
More recently, they were discussed by Cicala? and by Break-
well.3  Problems involving inequality constraints on a func-
tion of the state variables with no explicit dependence on
the control variables have been treated only in recent years.
Gamkrelidze* in 1960 presented necessary conditions for ex-
tremal solutions assuming that the time derivative of the in-
equality constraint function was an explicit function of the
control variable(s). Berkovitz® obtained essentially equiva-
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lent results in & supplement to an earlier paper of his. In
both cases, it was demonstrated that there is a certain non-
uniqueness of the discontinuities in the :nfluence functions
(also called adjoint variables or Lagrange multiplier func-
tions) at the corners of entry onto and exit from the constraint
boundary. Although this is mathematically correct, the
approach used here makes a specific choice in the manner
naturally consistent with the other boundary conditions.

Dreyfus® considered the more general state variable in-
equality constraint where a time derivative higher than the
first might be required to involve the control variable(s) ex-
plicitly. If the gth derivative of the inequality constraint
function is the first to be an explicit function of the control
variable(s), the constraint is called a qth order state variable
inequality constraint. On such a constraint boundary, one
control variable is determined by the requirement that the
gth derivative of the constraint function be zero. Further-
more, all lower derivatives must be zero at the entry corner
(onto the constraint boundary) in order that the constraint
not be violated. These entry corner constraints are always
equal in number to the number of relations needed to deter-
mine the jumps in the adjoint variables across the entry
corner. In Ref. 6, Dreyfus gave equations for determining
the jumps in the case of the first-order inequality constraint.
The results in Ref. 6 involved a reduced set of adjoint vari-
ables on the constraint boundary rather than a full set of such
variables with jumps; consequently, they cannot be related
simply to the results of Gamkrelidze* and Berkovitz.®

In this paper, the necessary conditions are derived, in-
cluding corner conditions, for an extremal solution to the
general ¢th order inequality constraint problem. The classi-
cal approach of adjoining the constraints to the performance
index by Lagrange multipliers is used. It is possible to use
the derivation to relax somewhat the usual continuity re-
quirements on the dynamical system differential equations.

Two analytical examples are presented to illustrate the use
of the theoretical results.

2. Optimal Programming Problem with an
Inequality Constraint
The Mayer formulation of the problem of Bolza is the de-

termination of «(f) in the interval t{, < ¢t < t; so as to maxi-
mize

J = ¢[x(t)i] (2.1)
subject to the constraints
x = f[x(1),alt),t] (2.2)
M = M[x(t,),t;) = 0 (2.3)
to and x(tp) given (2.4)

where ¢ is the independent variable, hereafter called time;
(") is d/di( ); a(t) is a scalar§ control variable that is
freely chosen;

xl.(t) is an n-vector of state variable histories,
x(t) = which result from given values x(f) and a
choice of af(t)
Za(t)
is an n-vector of known functions of x(¢),a(t), and
f =1 - |t assumed everywhere differentiable with respect

toxand «

§ Problems with more than one constraint and/or more than
one control variable are treated in Ref. 7.
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¢ is the performance index and is a known function of x(t;)
and t,;

M,

is a p-vector of terminal constraint functions,
M= - each of which is a known function of x(¢;) and
) t;; pmustbe <n
M, £ P =

Of primary interest is the addition of an inequality constraint
Cx,af) <0 (2.5)
or
S <0 (2.6)

where C is a scalar function of x(¢),a(f) and ¢; S is a scalar
function of x(f) and ¢!!; and «(f) must remain within the
limits imposed by € < 0 or 8 < 0. In the derivation in
Appendix A of the necessary conditions for an extremal solu-
tion with S < 0, other extensions to the classical problem of
Bolza are included.

3. Necessary Conditions for an Extremal
Solution with a Control Variable Inequality
Constraint

Considered first is the problem with a constraint relation
that explicitly involves the control variable program, C(x,,t)
< 0. The constraint function may also involve the state
variables x(f) and/or be an explicit function of the inde-
pendent variable ¢.

For those periods of an extremal solution on the constraint
boundary, a(t) is determined in terms of the state variables
and the independent variable by the relation

Thus, the neighboring solutions for those periods must satisfy
(0C/0x)6x + (0C/da)da = 0 (3.2)

where 0C/0x = [0C/0xy, . . ., 0C/dz,] and 0C/da are evalu-
ated along the extremal solution. Neighboring solutions
must also satisfy the perturbation differential equations

of

d of
7 (0x) = ox ox + > ba (38.3)
where
oh O of
oz, Oxn da
g _ . . b_f' _ .
ox da
oy " " Oz, da

are evaluated along the extremal solution. Substituting
(3.2) into (3.3) yields

d of of foC\toC
& (6x) = [& - S(—x <8&> &JBX (34)

which is the set of perturbation equations which a neigh-
boring solution must satisfy if it is to remain on the constraint
boundary ¢ = 0. It follows that the Euler-Lagrange equa-
tions for determining an extremal solution are

T
- <§> py when C < 0
do ox
i _ when on the con-  (3.5)
— [% _of (%) roC :lT . Straint boundary
0x O« \Q« ox C=0

[l See previous footnote.
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e O _

5a 0 determines a(t) when C < 0 (3.6)

C(x,a,t) = 0 determines «(f) when on the constraint

boundary (3.7)

where

M . .
1.() is an m-vector of influence functions, the
Al) = . Lagrange multiplier functions, and where
: { )7 is the transpose of ( ).

()
In an interval of C = 0, the inequality
AT(2f/dc)
50 /oa >0 (3.8)

must be satisfied. This is equivalent to the requirement that
the variational Hamiltonian be minimized, with respect to
permissible @, by the o« from (3.7). It means that the only
perturbations in « which could increase the performance
index ¢ would violate ¢ < 0. If this were not the case, then
(3.6) and the first member of (3.5) would be used. The
boundary conditions for the influence functions are

_|o¢ oM
AT(ty) = [ + 7 bx] (3.9)
with the transversality condition
. Q oM
(MX)=y, = — [ % + TBT] (3.10)

where v is a p-vector of Lagrange multiplier constants. The
initial time and initial state are given. The influence func-
tion boundary values (at the terminal time), the terminal
time itself, and the constants v constitute n + 1 4+ p quan-
tities, which are determined so as to satisfy (3.9), (3.10), and
the constraint relations (2.3).

The control variable o may have finite discontinuities at
the entering or exit corners (and even at other points), but
this only produces discontinuities in d3/df, not A. Thus,
the influence functions X are continuous across such corners;
in addition, the Hamiltonian &7 x is continuous across corners
(although some components of ¥ must be discontinuous if
« 15 discontinuous). These are the Erdmann corner con-
ditions in modern notation.

4. Necessary Conditions for an Extremal
Solution with a State Variable Inequality
Constraint

Considered here is the problem with a constraint function
that is an explicit function of the state variables and the inde-
pendent variable only, 8(x,/) < 0. For those periods of an

A

ENTERING
CORNER

EXIT
CORNER

BOUNDARY C:=0

|
i
CONSTRAINT ! c>0
'
i

[ it

t t t
Fig. 1 Schematic representation of the state vector
history.

# In the book listed under Ref. 4, the maximum principle
states that the Hamiltonian is maximum at each point for a
minimum of J.
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extremal solution on the constraint boundary, the state
variables are interrelated by

Sx@®,] =0 (4.1)

Since the constraint function S must vanish identically when
the solution lies on the constraint boundary, it follows that
its time derivatives also must vanish:

&8 /de = §® = 0

k = 01,2, ... on the constraint boundary (4.2)

Now

d8/dt = (08/0t) + (d8/0x)x

08/3t) + (28/x)

and, since f(x,a,t) appears in this latter relation, dS/dt may
be an explicit function of the control variable «(f). If it is
not an explicit function of af(t), one may consider the second
derivative, third derivative, ete., until one finally comes to a
time derivative that does explicitly involve the control vari-
able. Suppose this is the gth time derivative; this will be
called a g¢th order state variable inequality constraint.
S@[x,a,t] = 0 then plays exactly the same role as C[x,a,t] =
0 in the previous section, i.e., it determines a(f) in terms of
x(#) and ¢ when the solution is on the constraint houndary
S = 0. Thus, the differential equations for the influence
functions A(f) are the same as in (3.5) with C replaced by
S@,

However, in addition to the fact that S@[x,a,t] = 0 on the
constraint boundary, it must also be stipulated that at enter-
ing corners (points where the solution goes from an uncon-
strained are onto a constrained arc; see Fig. 1), the following
conditions be met:

(4.3)

Il

Sx@t),h] = 0
SOx(t),h] = 0
' (4.4)

SOV [x(t) 4] = 0

Now, Eqgs. (4.4) play the role of terminal constraints for the
unconstrained arc just preceding the constrained arc. It
follows immediately that the influence functions A(f) must
satisfly relations similar to those in Eqs. (3.9) and (3.10) at
the entering corner where ¢ = ;. These relations are

bS“)
21(6=) =376 + [ % +
OS«e—D
' + Hom1 Y]t=t1 (4:5)
) ) 8w
p"TX]t=t1— = [D‘-Tx]t=t1+ - [ = + M1 = ot

d8@—1n
N TP T]z=n (4.6)

where ug, . . ., 41 are ¢ Lagrange multiplier constants. The
influence function values at {;—, the entry corner time ¢;, and
constants uo, . . ., 4y constitute n + 1 + ¢ quantities that
are determined so as to satisfy (4.5), (4.6), and the constraint
relations (4.4). Thus, the influence functions are, in gen-
eral, discontinuous across an entering corner. They are still
continuous, however, at exit corners (points where the solu-
tion goes from a constrained arec onto an unconstrained arc;

see Fig. 1):
Ata—) = Mtt) %))

Also,

AT i=p— = (ATX)y=pt (4.8)
Gamkrelidze? and Berkovitz® showed, for the first-order
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state variable inequality constraint, that in the relation
WM(h—) = M(ti+) + p(08/0%)=4 (4.9)

an arbitrary constant, say b, could be added to . At the
same time, they showed that (4.7) could be written

Alte—) = Mie+) 4 ' (0S/0%) =1, (4.10)

with an arbitrary constant b’. What was not stated in Ref.
4 or 5 is that b’ must equal (—b). In other words, the jump
at ¢ is not unique, but the jump at ¢ is determined by the
jumpat#;.  Thus one has the pair

{Q‘T(tl_) = M(t+) + (o + 5)(08/0%) =4
AT(ty—) = AT(tA) — D(OS/0X)i=r

where b is arbitrary, but ug is unique, for the first-order state
variable inequality constraint. For the qth order constraint,
the corresponding results are

(4.11)

o8
oxX

o8
A=) = Mb+) + [ﬂo& + w

oS~
coe e ) ox :|t=l1

(4.12)

08@—1
A=) = A4) — b < ox )t=t2

The jumps in the variational Hamiltonian A7x at the corners
obey the analogous relations

a8

#oa’i-

(lTi()t=t1— = (DwT)I.(t=t1+ — [

25D
s e+ D) ot :|t=t1

(4.13)

. . o8~
D)o = VEimirt +b< = )
=tz

A demonstration of why the arbitrary b is allowed and why
b’ must equal (—b) is given in Appendix B.

5. Analytical Example with a First-Order State
Variable Inequality Constraint:
A Brachistochrone Problem

Given
T

I

(2g9)Y% cosy

¥ = (2gy)'* siny
z(0) = y(0) = 0

where z is horizontal distance, y is vertical distance (positive
downward), ¢ is the acceleration due to gravity, and v is path
angle to the horizontal (see Fig. 2), find v(¢) to minimize
the time to reach x = [ with the constraint that y < z tanf +
h, with 6 and A const.

"This is a problem with a first-order state variable inequality
constraint, since S = y — 2 tanf — h < 0 does not contain
the control variable v, and S = (2gy)¥? sec sin(y — 6) does
contain the control variable. On S = 0, S = 0 implies that
v =4.

The solution to the unconstrained problem, 2/l > (2/w)
{1 — [(w/2) — 8] tanb}, is as follows:

_T (™ 9\”"
v(@) = 5 wt where o = <4 Z)
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wL\Y2 .. .
ty = ; = minimum final time

Ao = — w/fy
where dt; = (Az 0 + A, 0y)e g
Ay = — £ ctnot
g
H = Mg + Mg = —1 = variational Hamiltonian

The solution to the constrained problem, %/l < (2/m){1 —
[(w/2) — 6] tanf}, is

Zr“(.v)lt OStSt]
0 =1y h<t<t
wz(tf—t) t?StSt/

where

_ (iﬁ — (w/2) + ctn0>1’2
@1 = 2 h ctnd

_ (i_0+ctn0 2
2=\ 27+ hotnd

_ (r/2) — @

@y

(71
tr — b2 = 0/2602

t

9 1/2
l:; (I + hetn®) (0 + ctn@):l —
/2
I:Zj ctnd <0 - -+ ctn0>]
g 2
minimuin final time

Ae(i—) — No(ti+) = ~uo tand
)\y(tl_) - )\y(tl“l‘) = Mo

where gy = (ctnd/g)(ws — w)). Note that yo— 0andt; — ¢
as h/1— (2/m){1 — [(w/2) — 6] tanb}:

H=2i+Ng=—1

I

0<t<iy

Figure 2 shows the solutions for tanf = % for several values
of /1.

6. Analytical Example with a Second-Order
State Variable Inequality Constraint

Given**
V= q
=
v(0) = —p(1) =1
z(0) = z(1) =0

find a(t) in 0 <t < 1 to minimize

1 1
J=Ej; a2dt

with the constraint that z(¥) < 1. This is a problem with a
second-order state variable inequality constraint, since S =
z-l and S = v do not explicitly contain the control variable
a(t), whereas § = a(f) does explicitly contain the control
variable.

** This example was suggested by John V. Breakwell of Lock-
heed Missiles and Space Company.
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=l

6 UNCONSTRAINED PATH

RELE

Fig. 2 Constrained Brachistochrone problem with
tang = 1.

The solution to the unconstrained problem, (I > 1), is
now obtained. Let E = }a?; E(0) = 0. Then E(1) must
be maximized. The Euler-Lagrange equations are

:)\» Ao — At + const
Az Az = const

Mg Ag = const = 1

a

@
>

8

I

[/
(=

!
z

The solution is easily obtained as

-2

1 —2¢

—a = 2

0

2

H = N+ Nb + AsE = —2

The solution with constraint, L <1 < %, is obtained as follows:
—8(1 — 3l) + 24(1 — 4} 0<t<1i

- {—8(1 — 30+ 24(1 — 4)(L — ©) 1<i<
1 — 8(1 — 30t + 12(1 — 4D 0<t<i
—~1 481 —3)(A — &) — 12(1 — 4D)(A — 1)

e o«

v

z

N> 8

T T R [

F<t<1
t — 401 — 3Dz + 4(1 — 4D¢® 0<t<i
T 4 — 3D — 2 + 41 — 4D — &)
1<t
Ao = —a— A(E—) — NGE+) = 0 (8§ = 0 not used here)
24(1 — 41 0<t<}
={—24(1—4l) 1<i<1
Note that A, (A —) — A.(G+) = 48(1 — 40):
= 2 + 6(1 — 4l)2
H = —8(1 — 6)*
The solution with constraint, 0 < [ < %, is
—:%(1—3%) 0<t<3l

a = 0 A<t<1—3l

2 11—t
_é—l<1—7> 1-31<t<1
-1
<_§l 0<t<3l

A<i<1 -3l

1—-8l<t<1

1 — t\2
_<1“ 31)
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0<t< 3

AI<t<1 -3

l 1—(1———1_t>3] 1—-38<t<1
31 =r=

2 t

271(1"37> 0<t<3al

Ao =

2 1—t

S — === <

31(1 31) 3<t<1

Note that A.(31—) — M(8l+) = (4/3l2)(% - 0:

{2/ 97*
A =
—2/91

Note that A (8I—) — A (3l+) = 4/91%:
J = 4/9]
H=0

Figure 3 shows the solutions for various values of I. The
most interesting thing about these solutions is the fact that
the optimal path touches the constraint boundary at only
one point for a finite range of values of the constraint param-
eter (3 <1< 1), and only one of the influence functions A is
discontinuous. For 0 < I < %, the path stays on the con-
straint boundary for a finite time, and both A, and A, are
discontinuous. This behavior is typical of a second-order
state variable inequality constraint.

Appendix A: Derivation of Necessary Conditions
for an Extremal Solution with a gth Order State
Variable Inequality Constraint

In Sec. 4, it was shown that the first ¢-1 derivatives of the
state variable constraint function S(x,f) must be zero at the
entry corner of an S = 0 period, if S@ [x(¢),a(t),t] is the first
derivative of S to be an explicit function of «. One thus
has a vector of constraints at [x(¢),;] of the same form as
the M [x(¢/),t;] = O constraints. They are written as

S
S
Nix(t)a]l =1 . =0 (A1)

SV Ji—y

In a standard approach to the variational calculus problem de-
fined in Sec. 2, with the added constraints (A1), the constraint

| T T T
_ UNCONSTRAINED,22 174 _(PARABOLA)
24 H
OSCULATING CUBIC
20 y ARCS,1/6 < £ < 1/4
16 AN \ .
X \ BIFURCATED CUBIC
124 A N ARcs, L<1/4
/ \
L N
.08
/
\
044
’ \
0

Fig. 3 Curves that minimize fol a? dt withx(0) = x (1) =
v(0) = —v(l) = l,andx < L
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relations are adjoined to the performance index by means of
Lagrange multipliers:

J = ¢ + v*M + y*N +

ti— t2— tf r .
L2 [+ [ 2 —odr (a2)
where v is a p-vector of Lagrange multiplier constants, u
is a g-vector of Lagrange multiplier constants, and A(f) is an
n-vector of Lagrange multiplier functions. The integral
has been written in three sections to allow for possible dis-
continuities at ; and s, the entry and exit corner times.

On an extremal solution, J must be stationary with respect
to arbitrary small perturbations in the solution. This
means that ¢ is stationary with respect to any small perturba-
tions that satisly the constraints (2.2, 2.3, 2.6, and Al). The
differential of J is

_ d¢ @ oM M )
4 = bx(t,) d + dtj + »T <b (t/) de + dtf +
bN Z)N th— ta—
ur (bx(tl) dx, + idt‘> + ﬁ + +
tr of .
ft,+ AT <a‘x ox + & do — 6x> it (A3)

where dx, = dx(t;), ete., and all partial derivatives are evalu-
ated on the nominal (extremal) solution. Over each of the
time intervals, the A76x ferm first is integrated by parts.
In the interval t; < ¢ < £, (3.2) is used, with 8@ in place of
C, to solve for §cr in terms of §x. One obtains

_ 0% ¢ oM )
aJ a(t) f+ dtf+v<a(t)dX/+ dtf +
oN ON
u? (ax(tl) dax; + b—tl dt1> — [(AT8K)t =1, —

(AT0X)s =gt ] +

o T(ar 02 o 30 2 -

(768 = — OToR)em] + [ [WHT_ _

@\ -1 (2)
AT <aSq> asq] oxdt —~ [(AT8K)=u— ~ (AT6X)1=s] +
da o

f :‘ [(;.r poard ) 5% 4 AT —f aa] it (A4)

For J to be stationary under arbitrary perturbatmns, the
coefficients of dx;, di,, dx, dty, 6x(f), 6c(f) must each be zero
[0x(ty) = 0 by (2.4)]. To group terms, use

dx, = dlx(t.)] = 6x(ts) + X(t.)dta (A5)

where x is evaluated at ¢,, 6x(Z,) is the change in x at the nomi-
nal {,, and X(1,)dt, is the change in x(¢,) due to the change in
ta. Using (AB) at iy, {4, to—, H+, h—, (A4) is rearranged

to obtain
_ | o¢ oM }
4 = [ax(t/) + v7 ox(1)) AT(ty) dx, +
l:g;b + ¥7 @ + (lTX)z t,] dty AT () — AT (1g~—) s +
£
[~ T m e + TR 1=t 1t +[ r ON
e e W )

AMh+) — 3wT('ﬁ‘)] dx; + I:!-,lT ba__N —(DMTk)t=t1+ +

(m'z)hn_] it + j::‘” + [((MHT —) oz +
of ' f— of of (8@
D‘Ta_oz‘sa]dt+ft1+ %““”‘T[ax (m)

o8®@ ]} sxdt (A6)

ox
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For stationary J, then, one must have

_ 2 oM
200 = 5xy T 2s)
: . - (A7)
(ATX)j=y, = —( + 7 E)—t,>
Mia—) = AT(L:
(2, ) ( +)' } (A9)
ATty = (ATX)1=t+
ON
A=) = A7(h+) + P!
ON (A9)
(lTi)t=t1— = (DVTx:)l=t1+ UT bt
a+ <§>T A=0
ox
S <0 (A10)
ar &g
foleY
of DS@\ 1 p8@Tr
“[ax (aiﬁa‘) bx] T o0 am
SWx,at] = 0
By identifying
_ 9% . - _ 9%
AT(y+) = ox(t ATZ)r=pn+ = oh (A12)

it is seen that (A9) is completely analogous to the terminal
boundary conditions (A7).

With a control variable inequality constraint C(x,a,t) < 0
(which is the special case ¢ = 0), there is no N vector and
hence no discontinuity in X at either #; or £,

One may use the idea of an additional (scalar) constraint
N[zt),h] = 0 to allow certain discontinuities in the path.
First, suppose that f(x,a,t) has a finite discontinuity on some
surface N(x,t) = 0. Then, suppose that the extremal solu-
tion reaches this surface at time #. One can think of this
as a constraint

Niz@)h] =0 (A13)

The analysis of this appendix may then be followed through
to obtain, in particular, (A9). Since f(+) == £(t; —) has
been assumed, one can see immediately that the second
equation of (A9) requires a discontinuity in & at #.7T With
continuous f, p = 0 is obtained as the only possible solution;
t1, in fact, i3 then of no special significance. One hasn + 2
equations in (A9) and (A13) for the n jumps in the influence
functions, for the time #;, and for the multiplier x. Note
that Breakwell obtained essentially the same results in Ref.
3.

The allowable discontinuity can be pushed one step further
by assuming that f becomes infinite on a surface N(x,t) = 0,
but that the resulting discontinuity Ax is a known function,
say, A(x,t). It again is assumed that the extremal solution
reaches the surface N = 0 at time #. One again invokes
the constraint

Nx(t),hl =0 (Al4)
(A9) is no longer valid, however, because (A5) and (A6) do
not adequately describe a perturbed solution. Before, dx(t.)

11 Unless A has a zero component for each nonzero component
of #(t,~) — f(t:+).
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was assumed the same, whether viewed from {,— or from
ta+. Now, if changes di;,dx(t;—) occur, one obtains

dx(t1+) = dx(tl—) + (g%)t B dx(tl—) + <a§i) dtl

1 —

OA OA
= dx({,—) I:I + (5;)!1_ :| + <D—t>¢x_ diy  (Alb)

Rewriting (A6) with dr,+ and dz;— distinet and then sub-
stituting for da;+ from (A14), one finds that (A9) is replaced
by

M=) =x1"l+) [I +

G)- ().

MH—)xh—) = AT(HL+) [i(trf‘) -

()]G

Note that no smallness requirement was placed on the
discontinuity Ax, but the changes dx(t;,—) and df; and the
resulting dx(#;+) on perturbed paths must be of first order
only.

(Ale)

Appendix B: Nonuniqueness of Influence
Functions on a State Variable Inequality
Constraint Boundary

On a state variable inequality constraint boundary, one
has

- o . of
—_— T —
b an = an g

@\~ 98@
aSq> NG 0 @B

da ox

If one adds the function 5(0S«~D/dx) to A7 each place it
appears in (B1), one obtains

(g—1) (g—1)
Q(MMOS >+<m+basq )bf

di ox ox ox
(m +b aS;;”) aa—i <a§z>>—1 aas:) (B2)
Subtracting (B1) from (B2), one obtains
()
@1 1@\ — )
T o (3e) B

ATAA JOURNAL

Fig. 4 Typical in-
fluence function
history with a
state variable in-
equality constraint.

But

8@ > [DS@—D

T dal ox ot

OS@—1 JOSe~D of
da  da ] B

dx da (B4)

since S@~V is not an explicit function of @. The last term

of (B3) is thus —b(0S@/0x). By expanding the first term

of (B3) and combining terms, one finds that (B3) reduces to
db 08t~
dt  ox

(B3)

If b is constant, one has that (B2) is zero. Adding 5(dS8@—b/
Ox) to A7 in the interval on the constraint boundary thus
leaves the differential equation (B1) unchanged.

Figure 4 shows possible histories of a component of & across
an interval where 8 = 0. The solid line is the choice made in
this paper, namely, b = —b’ = 0, which makes } continuous
at exit corners like ¢ = ¢,
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